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Summary: This paper introduces MAST (ML Application Scheduler on Twine), a global scheduling system 

developed at Meta to address the severe load imbalance and poor hardware utilization caused by users manually 

selecting datacenter regions for their machine learning (ML) training data and computation. In Meta’s private 

cloud, this manual process led to major mismatches between workload demand and hardware supply, with the 

most overloaded region showing a GPU demand-to-supply ratio of 2.63 for high-priority workloads. MAST works 

alongside Meta’s Resource Assignment Service (RAS), which groups machines into dynamic ML clusters, and 

Twine, which manages container orchestration, to coordinate efficient global training execution. MAST provides 

a unified global-scheduling abstraction that automatically places both data and ML workloads across multiple 

regions. The system is built on three major design principles: temporal decoupling, which separates real-time job 

scheduling (fast path) from background data and machine optimization (slow path, using Tetris, a system that 

optimizes data placement across regions by considering data-access patterns of Spark, Presto, and ML training 

jobs and uses soft-balance constraints for scarce GPUs while enforcing hard constraints for CPU and storage); 

scope decoupling, which assigns responsibilities at different scales (Global ML Scheduler (GMS) for global job 

queue, Regional ML Scheduler (RMS) for regional resource allocation, and Cluster Manager (CM) for cluster 

orchestration); and exhaustive search, where RMS evaluates all clusters to find the best placement plan for both 

data and training jobs. Deployed at hyperscale, MAST reduced the GPU imbalance ratio to 0.98, achieved 98% 

GPU allocation efficiency, and maintained a data non-collocation rate below 0.1%, confirming its scalability and 

effectiveness.  
 

Evaluation: The paper tackles a highly significant challenge in large-scale ML infrastructure - efficiently utilizing 

scarce and expensive GPUs across global datacenters. Its deployment at Meta, managing around 100,000 GPUs 

across tens of regions, shows strong real-world impact, with overload reduced from 2.63 to 0.98 and GPU 

allocation reaching 98%. The approach is novel, valid and well-structured around three clear design principles. 

The use of temporal decoupling to separate slow cross-region data movement from real-time scheduling is 

particularly effective. The application of scope decoupling and exhaustive search at a global scale, along with 

soft-balance modeling for GPU scarcity in data placement, makes the design novel compared to prior systems like 

Hydra and Yugong (both use early binding). The evaluation is strong and well-supported by real production data 

and workload results. About 70% of workloads are first-time jobs, and the system still achieves a high GPU 

allocation rate of 98%, showing reliability and scalability. The paper also strengthens its results by comparing 

three versions of its data placement system (V0, V1, and V2) and by using a simulated federated fast-path 

scheduler, which helps justify the design choices. The manuscript is well-written and clearly explains both 

challenges and solutions. 

 

Main takeaways 

1. MAST’s temporal decoupling - splitting fast, real-time job scheduling from slow, background data 

movement, ensures efficiency despite long data transfer times across regions. 

2. MAST shows stable production-scale operation across Meta’s global infrastructure, orchestrating tens of 

thousands of ML jobs daily with no reported regressions in reliability. 

 

Strengths 

1. The design based on temporal decoupling, scope decoupling, and exhaustive search makes complex geo-

distributed scheduling understandable and modular. 

2. Assigning scheduling responsibilities across global (GMS), regional (RMS), and cluster (CM) levels 

prevents bottlenecks while maintaining scalability and control. 

 

Weaknesses 

1. The evaluation of the Tetris solver is not very detailed, comparisons with commercial MIP solvers or 

reinforcement-learning-based optimizers could strengthen confidence in its optimality. 

2. The reliance on large-scale data replication increases storage usage by 75-125%, which may become 

unsustainable as datasets and model checkpoints continue to grow. 

 

Discussion: Could MAST be adapted for smaller organizations or public cloud platforms that lack Meta’s massive 

infrastructure and custom systems like Tetris, Twine and RAS? 


