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Summary: This paper addresses the critical performance bottleneck introduced by the retrieval phase in Retrieval-

Augmented Generation (RAG) systems as the associated datastores scale up to trillions of tokens. RAG is an 

approach that allows Large Language Models (LLMs) such as GPT or Gemini to access real-time external 

information, reducing the need for frequent retraining and helping to prevent hallucinated answers. However, the 

similarity search process used to find relevant data in extremely large datastores (for example, at the 1.4 trillion-

token scale) leads to major slowdowns in latency, throughput, and energy efficiency. Existing optimization 

methods such as PipeRAG (which overlaps retrieval and inference) and RAGCache (which reuses previously 

retrieved results) do not fully solve these overheads at the trillion-token level.The proposed solution, called 

Hermes, is an algorithm-systems co-design framework that tackles these bottlenecks through two main strategies. 

First, it reduces retrieval latency by dividing the massive datastore into smaller search indices distributed across 

multiple CPU nodes, grouping similar documents using K-means clustering (a standard clustering algorithm that 

groups data points by similarity). Second, Hermes improves throughput and energy efficiency through a 

hierarchical search process. This involves an initial fast, small-scale sampling search with a low nProbe value 

(which controls how many clusters are briefly checked) to identify the most relevant clusters, followed by a 

deeper, more precise search using a higher nProbe value on only those selected clusters. Hermes also applies 

Dynamic Voltage and Frequency Scaling (DVFS), a hardware-level technique that lowers CPU power 

consumption when full performance is not needed. The authors show that Hermes achieves up to 9.33x speedup 

in end-to-end latency, 2.1x improvement in energy efficiency, and 9.1x faster Time-to-First-Token (TTFT) 

latency for trillion-token datastores, all without reducing retrieval quality. Overall, the paper highlights that 

scaling future RAG systems efficiently will depend on thoughtful coordination between algorithms and hardware, 

emphasizing intelligent data partitioning and selective retrieval rather than brute-force computational scaling. 
 

Evaluation: The paper addresses a highly significant issue: retrieval overhead dominates total latency in 

Retrieval-Augmented Generation (RAG) systems, accounting for nearly 94% of the delay in 100-billion-token 

datastores. As RAG continues to gain widespread adoption across commercial and academic applications and 

dataset sizes grow exponentially, addressing this bottleneck is essential for the scalable and efficient deployment 

of Large Language Models (LLMs). The proposed solution is both valid and novel. The co-design of distributed, 

similarity-based clustered indices combined with hierarchical search through document sampling (rather than 

relying solely on cluster centroids) represents a thoughtful and methodologically sound approach to reducing the 

effective search space while maintaining retrieval accuracy, as measured by NDCG (Normalized Discounted 

Cumulative Gain, a ranking quality metric). The use of IVF (Inverted File) indices with SQ8 quantization is well-

justified through clear analysis of trade-offs in memory, throughput, and recall compared to alternatives such as 

HNSW (Hierarchical Navigable Small World, a graph-based nearest neighbor index that offers high speed but 

much higher memory usage). The experimental evaluation is comprehensive and well-executed. The authors 

provide detailed system characterization (Section 3) and systematically benchmark Hermes against prior 

acceleration techniques like PipeRAG and RAGCache under varied conditions, including different batch sizes, 

datastore scales, and retrieval stride lengths. The inclusion of an open-sourced framework and a multi-node 

analysis tool that aggregates real hardware measurements to simulate trillion-token scenarios further strengthens 

the credibility of the results. Overall, the paper is clear, well-structured, and demonstrates strong experimental 

rigor, with thoughtful justification of parameter choices such as the nProbe sweep. 
 

Main Take-aways 

1. Scaling RAG datastores to the trillion-token regime shifts the critical performance bottleneck away from GPU-

based LLM inference and back to CPU-based retrieval time, energy consumption, and memory capacity. 

2. Hermes' algorithm-system co-design framework, specifically, clustered index distribution combined with 

hierarchical search, is necessary to overcome the linear scaling overhead of retrieval, achieving efficiency 

improvements (latency up to 9.33x) that naive sharding or prior optimizations cannot. 
 

Strengths 

1. Hermes achieves substantial latency (up to 9.33x) and energy (up to 2.10x) improvements, particularly excelling 

in the highly challenging trillion-token scale where previous RAG optimizations lose efficacy. 

2. The use of similarity clustering combined with a two-step search process (low nProbe sampling followed by 

high nProbe in-depth search on a subset of clusters) intelligently reduces computational load while maintaining 

high retrieval accuracy (NDCG). 
 



Weaknesses 

1. The performance benefit offered by Hermes is strongly dependent on the inference model size; speedups 

decrease significantly (from 9.38x down to 3.92x) as the LLM's latency increases and the bottleneck shifts back 

to the GPU/inference stage. 

2. The design explicitly focuses on and is optimized for dense vector IVF indices, driven by the memory overhead 

of alternatives like HNSW. The paper mentions the potential benefits of sparse and hybrid retrieval methods but 

does not explore how Hermes’ clustering/sampling strategy generalizes or integrates with them. 
 

Discussion: If future hardware or retrieval methods (like improved HNSW or hybrid sparse-dense searches) 

change the trade-off between speed and memory, Hermes could simply adjust its clustering and search-depth 

settings to match the new setup, keeping it efficient without needing a full redesign. 

 

The Shift from Models to Compound AI Systems 

 

Summary: The article argues that the AI field is transitioning from a focus on building ever-larger single models 

to constructing compound AI systems, combinations of multiple specialized models and modules that interact to 

perform complex tasks. The motivation stems from the growing cost, energy consumption, and diminishing 

returns of scaling monolithic models. The authors propose that integrating components such as retrieval modules, 

tool-use, multi-step pipelines, and external data interfaces can make systems more adaptable, efficient, and 

controllable. They outline several advantages, including improved performance through specialization, dynamic 

access to real-time information, better control and interpretability, and flexible cost-quality trade-offs. The post 

also identifies design challenges in optimizing interactions among components and managing the larger system 

complexity. 
 

Evaluation: The problem addressed, how to scale AI capabilities sustainably, is timely and highly significant 

given the growing computational and environmental cost of frontier models. The article succeeds in framing this 

issue clearly and persuasively. While the proposed solution of compound AI systems is not entirely novel, the 

synthesis and articulation of the concept are valuable. The ideas are well-motivated, logically argued, and 

supported with intuitive examples (example: retrieval-augmented generation and multi-tool reasoning). However, 

as a conceptual piece rather than a technical paper, it lacks formal evaluation or empirical validation of its claims. 

The writing quality is strong, concise, and accessible, but the discussion remains high-level without quantitative 

results or detailed design guidelines. 
 

Main Take-aways 

• The next stage of AI progress may rely on system composition rather than model size alone. 

• Combining smaller, specialized components can yield better efficiency, adaptability, and reliability.  

• Real-world deployment will depend on how effectively these modules are orchestrated and optimized 

together. 
 

Strengths 

• The blog articulates a forward-looking trend clearly and accessibly, making it suitable for readers less 

familiar with systems concerns. 

• It ties together several lines of recent work (retrieval systems, tool-augmented LMs, modular AI) under 

a coherent “compound system” framing. 

• It emphasises practical deployment concerns (cost, adaptability, control) which are often under-

emphasised in pure modelling research. 
 

Weaknesses 

• Because it is conceptual, the blog lacks detailed empirical results or comparative experiments to 

substantiate how much better compound systems are vs monolithic models in practice. 

• The design guidance is somewhat high-level; for example, how to choose modules or orchestrate them 

remains vague. As a researcher, I would like more concrete recipes or frameworks. 
 

Discussion Topic: How can researchers decide when it’s better to split a task into several smaller models instead 

of using one large model? In what cases does this make the system stronger, and when does it just make things 

more complicated? 


