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Summary: The paper is motivated by the super-linear growth observed in AI data, model capacity, and 

infrastructure deployment, which is resulting in significant, and often overlooked, environmental costs. Data for 

recommendation models at Meta, for instance, has increased by roughly 2x in two years, while model size has 

increased by 20x. The key problem addressed is the lack of an end-to-end characterisation of AI's carbon footprint, 

particularly neglecting the resource intensity of data processing and the embodied carbon of system hardware. To 

address this, the paper provides a holistic analysis that spans both the Machine Learning Model Development 

Cycle (data processing, experimentation, training, inference) and the AI System Hardware Life Cycle 

(manufacturing, transport, use, recycling), arguing that both operational and embodied carbon must be jointly 

considered to assess AI’s true environmental cost. The solutions and insights are derived from industry-scale 

characterizations at Meta. Key results show that the embodied carbon footprint (manufacturing) is becoming the 

dominant source of emissions, particularly when operational energy is offset by carbon-free sources. For some 

large-scale ML tasks, manufacturing costs are estimated to be roughly 50% of the location-based operational 

carbon cost. Furthermore, the paper demonstrates the effectiveness of iterative hardware-software co-design, 

achieving dramatic operational efficiency improvements (800x reduction for a Transformer-based Universal 

Language Model (LM) through caching, GPU acceleration, and low-precision computation). However, the paper 

concludes that these efficiency gains are largely neutralized by increased demand (Jevon’s Paradox), necessitating 

a shift towards making efficiency and sustainability mandatory evaluation criteria. 
 

Evaluation: The paper addresses an issue of immense significance and impact, offering a critical, data-driven 

perspective on the unsustainable trajectory of large-scale AI. The authors successfully leverage Meta's extensive 

production data to ground their analysis, which strengthens the overall contribution. The novelty lies primarily in 

the holistic scope and the detailed analysis of the embodied carbon cost in the context of AI infrastructure growth. 

Prior work often focused narrowly on training. The paper establishes the critical insight that operational 

optimization alone is insufficient due to the manufacturing cost of system hardware and the accelerating demand 

(Jevon's Paradox). The demonstration of the effectiveness of cross-stack optimization, resulting in the 800x 

reduction for the LM model, is a highly valid demonstration of the potential for systems research. The 

experimental evaluation is strong because it relies on real, at-scale industry workloads (LM and various RMs) and 

provides transparent quantification of carbon distribution across different ML phases (e.g., showing Inference 

dominates for LM). The paper is well-written and systematically charts out challenges and opportunities across 

data, algorithms, systems, and metrics. 
 

Main Take-aways: 

1. The true environmental cost of AI must include carbon emissions from every phase, Data, Experimentation, 

Training, and Inference, plus the often-overlooked carbon from manufacturing the hardware itself. 

2. As data centers shift toward carbon-free energy, the manufacturing-related “embodied carbon” of AI hardware 

is becoming the dominant contributor to AI’s overall environmental footprint. 

3. Even massive cross-stack efficiency gains (800x reduction) are quickly outweighed by AI’s exponential growth 

(Jevon’s Paradox), so sustainability requires fundamentally rebalancing how we trade off model quality against 

resource and carbon consumption. 
 

Strengths 

1. The paper provides rare, data-driven characterization using Meta’s internal at-scale workloads, clearly 

quantifying super-linear growth across data, model size, and infrastructure. 

2.  It demonstrates, with concrete evidence, that hardware-software co-design can yield dramatic efficiency gains 

(example, an 810x reduction for the LM model). 
 

Weaknesses 

1. Although federated learning’s environmental cost is evaluated, the paper provides far fewer mitigation 

strategies for edge environments compared to centralized data centers. 

2. The largest efficiency gains depend on highly specialized, custom kernels and caching strategies whose 

engineering overhead and limited generalizability are not fully discussed. 

Discussion Topic: If data is perishable (like, NLP data with a ~7-year half-life), should data centers actively 

discard low-utility data to reduce storage, ingestion, and embodied carbon demands? 


