
Paper Review: In-Datacenter Performance Analysis of a Tensor Processing Unit 

 

Summary 

This paper analyzes Google’s Tensor Processing Unit (TPU), a custom Application-Specific Integrated Circuit 

(ASIC) introduced in 2015 to accelerate neural network inference in datacenters. The motivation came from 

projections that rising voice search would double compute demand, making CPUs and GPUs economically 

inefficient. The TPU’s key innovation is its minimalist, domain-specific design: a PCIe-attached coprocessor 

built around a massive 65,536 8-bit MAC (Multiply-Accumulate) systolic array, the core operation for neural 

networks where inputs are multiplied by weights and summed, and 28 MiB of on-chip unified memory. By 

using deterministic execution and 8-bit integer math, it matches strict 99th-percentile latency requirements while 

being far more energy- and area-efficient than floating point used in GPUs. Evaluating six production workloads 

(2 types of each MLPs, CNNs, LSTMs) in TensorFlow, the TPU delivers 15-30× speedup and 30-80× better 

performance per watt over Haswell CPUs and K80 GPUs. Also, using the GPU’s GDDR5 memory in the TPU 

would triple achieved TOPS and raise TOPS/Watt to nearly 70X the GPU and 200X the CPU. The study 

highlights how domain-specific architectures can provide order-of-magnitude gains in both throughput and 

efficiency for large-scale machine learning and reveals that real datacenter workloads are dominated by MLPs 

and LSTMs rather than CNNs, suggesting architectural focus should align with actual usage. 
 

Evaluation 

This paper makes a strong case for domain-specific accelerators in datacenters, tackling the critical challenge of 

growing compute and energy demands for latency-sensitive inference. The TPU’s design is highly novel in its 

minimalism - prioritizing 99th-percentile latency with deterministic execution, massive 8-bit systolic arrays, and 

large on-chip memory. It clearly shows why GPUs, though powerful, are not ideal for inference under strict 

latency constraints. The experimental evaluation is outstanding: six real production workloads representing 95% 

of Google’s inference demand, implemented in TensorFlow, compared against contemporary Haswell CPUs and 

K80 GPUs. Use of the Roofline model and performance counters provides clear insight into bottlenecks, while 

energy and latency analyses are detailed. One limitation is that TPU lacks energy proportionality, drawing near-

full power even at low load. The “Fallacy and Pitfall” discussion adds depth by addressing misconceptions in 

accelerator design (misconceptions: inference prioritizes latency, workloads extend beyond CNNs). Overall, the 

paper is well-structured, detailed, with understandable graphs and explanations. 
 

Main Take-aways 

1. Domain-specific chips like the TPU can deliver order-of-magnitude gains in both speed and efficiency 

for neural network (NN) inference compared to CPUs and GPUs. 

2. Inference is latency-bound, not throughput-bound, so designs must prioritize 99th-percentile response 

times; deterministic execution is a key factor. 

3. Real datacenter workloads are dominated by MLPs and LSTMs, not just CNNs (only 5%) (shocking 

take-away), so architectural efforts should reflect actual usage rather than research trends. 
 

Strengths 

1. TPU delivers 15–30× speedups and 30–80× better performance/Watt than CPUs and GPUs, enabled by 

its massive 8-bit systolic array and large on-chip memory. 

2. TPUs are designed for real-world latency needs, it directly targets 99th-percentile response-time limits 

in production inference workloads, which is very an important factor for good user experience. 

3. TPU’s minimalist design avoids overheads like caches, branch prediction etc, while reusing earlier 

ideas (systolic arrays, decoupled access/execute) to maximize utilization in a compact, low-power chip. 
 

Weaknesses 

1. The TPU consumes nearly full power even at low utilization, unlike CPUs and GPUs, which scale 

down better. This wastes energy in datacenters with fluctuating workloads. 

2. Some workloads (example: CNN1 had shallow layers) require developers to restructure batching to 

fully utilize the matrix unit, showing limited compiler or architectural support for all cases. 

3. TPUs lack sparse support, handling only dense matrices, limiting efficiency for models that exploit 

sparsity. 
 

Discussions 

1. GPUs dominate training (throughput), while TPUs shine at inference (latency). How should datacenters 

balance these two needs, and how can deep learning frameworks like TensorFlow adapt to this? 


