Paper Review- Modyn: Data-Centric Machine Learning Pipeline Orchestration

Summary: This paper introduces Modyn, an open-source orchestrator for ML pipelines on continuously growing
datasets such as click logs and sensor streams, which also provides tooling for analyzing pipelines. Retraining on
full data is costly and slow, so Modyn provides policy-driven retraining through two mechanisms: (i) triggering
policies (deciding when to retrain) and (ii) selection policies (deciding which samples to use based on factors like
importance/weight). Its pipeline is built around a supervisor (manages triggers and orchestrates flow), a selector
(implements sample selection), storage (optimized for random sample retrieval at scale), a trainer (executes
retraining), and an evaluator (measures performance). Key innovations include support for sample-level selection,
drift-based (drift: an estimate of how different the current data is from the historical data) triggers that work
without labels, and system optimizations like partitioning, parallelism, and prefetching. Experiments on datasets
like Yearbook, CGLM landmarks, Criteo 1TB, and Kaggle arXiv, shows that Modyn achieves near full-data
accuracy with only 50% of training data, adapts retraining to drift efficiently, and delivers 71-98% of local
throughput despite the complexity of random sample selection.

Evaluation: The problem Modyn addresses is highly significant: in real-world ML deployments, data streams
grow endlessly, and distribution shifts are inevitable, making full retraining costly and causing stale models if
ignored. Modyn’s solution is both valid and novel, offering an end-to-end open-source orchestrator (plus analyser)
that supports sample-level data selection, policy-driven triggers, and a declarative pipeline abstraction. A key
strength is the use of composite models for fair pipeline comparison and efficient sample-level data access. The
experimental evaluation is detailed, spanning multiple modalities (images, text, recommender logs) and
combining ML-centric metrics (accuracy vs. selection/triggering policy) with system-centric ones (throughput
and overhead vs local baselines). Results clearly show near full-data accuracy at reduced cost and throughput
close to system ideal. The paper is clear and well-structured, with figures/graphs to explain workflows/results in
a clear manner.

Main takeaways

1.  Smart sample selection can nearly match full-data accuracy at half the cost, showing that data-centric
retraining is practical and effective.

2. Different data selection strategies excel under different types of distribution shift (example: uncertainty
sampling handles covariate shift, while RS2 or DLIS work well for prior-probability shift), showing that
there is no single solution for all.

3. Systems-level optimizations like partitioning, parallelism, and prefetching allow Modyn to deliver close-
to-local throughput, proving that sample-level selection is feasible at scale.

Strengths

1. Modyn balances performance and ease-of-use by implementing critical components in C++ while
exposing pluggable policies in Python, allowing researchers to add new models and strategies easily
without worrying about low-level systems details.

2. Provides a modular pipeline (supervisor, selector, storage, trainer, evaluator) with clear interfaces,
allowing data selection and triggering policies to be swapped or extended independently of the system.

3. Modyn is open-source and comes with an interactive dashboard for pipeline analysis and comparison,
making it highly usable and extensible for researchers.

Weaknesses
1. The choice of drift metrics and embedding spaces is not deeply explored, leaving uncertainty about how
well drift detection generalizes across data types such as images, text, and tabular logs (unstructured
data).
2. Evaluation focuses on controlled experiments: real-world deployment challenges such as delayed labels,
noisy data, and scaling beyond a single server (like distributed environments) are underexplored.

Discussion topics
1. How practical is drift-based triggering in real-world deployments where data is messy and embeddings
may change over time? Could AutoDrift be reliably used in production?
2. Given Modyn reaches close to local throughput, what additional optimizations or architectural changes
would be needed to scale it to distributed, multi-node training environments?



