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Summary 

This paper introduces Alpa, a compiler-runtime that automates distributed training of very large neural networks 

by unifying data, operator, and pipeline parallelism in a two-level hierarchy. The motivation comes from the fact 

that manually training large models, such as GPT-3, requires extensive engineering effort to tune a complex, high-

dimensional, and interdependent combination of data, operator, and pipeline parallelism techniques. Alpa’s key 

idea is to separate and co-optimize: (1) intra-operator parallelism, which partitions operators along tensor axes 

within a fast device mesh, chosen via ILP (integer linear programming: pick shardings to minimize 

communication); and (2) inter-operator parallelism, which slices the model into pipeline stages and maps them to 

meshes via DP (dynamic programming: choose cuts/meshes). A runtime adds cross-mesh resharding with local 

all-gather (each device shares its chunk, so every device gets the full tensor) and executes per-mesh MPMD 

(multiple programs, multiple data) schedules. Alpa matches or beats Megatron-LM on GPT-3, delivers 3.5x–9.7x 

over DeepSpeed on MoE, and sustains ~80% weak scaling on Wide-ResNet. Key contributions: the hierarchical 

plan space, cost-aware compiler passes with profiling/memory checks, cross-mesh resharding, and operator 

clustering/pruning to scale the search. 
 

Evaluation 

Alpa tackles a significant and timely problem: the engineering overhead of scaling large deep learning models. 

By automating data, operator, and pipeline parallelism, it maps parallelism types to hardware bandwidth and 

generalizes to heterogeneous models where specialized systems fail. The approach is robust and novel: splitting 

work into intra and inter operator categories provides a clear foundation and using dynamic programming for inter 

operator planning and integer linear programming for intra operator sharding turns a combinatorial search into 

controllable subproblems. The evaluation is comprehensive, with weak scaling to 64 GPUs on AWS across GPT-

3, GShard MoE, and Wide-ResNet, strong Megatron-LM and DeepSpeed baselines, and clear ablations for both 

the intra-op and inter-op compiler passes. Importantly, the limitations clearly define Alpa’s current scope and 

invite future work on optimizing microbatch count, supporting dynamic graphs, and improving compute-

communication overlap. The paper is well structured, clearly explains the hierarchy and the DP and ILP 

interaction, and the figures are helpful. 
 

Takeaways 

1. The hierarchical split into intra-operator and inter-operator parallelism aligns algorithms to hardware 

topology, shrinks the search, and still spans the full plan space. 

2. Combining ILP for intra op sharding with DP for inter op stage and mesh planning, plus profiling and 

memory checks, yields near-optimal plans that generalize to heterogeneous models, not just transformers. 

3. The runtime’s cross-mesh resharding with local all-gather and an MPMD runtime lets different stages 

use different shardings and mesh shapes without heavy slow-link costs. 
 

Strengths 

1. The combination of a DP algorithm for inter-operator stage assignment and an ILP formulation for intra-

operator sharding allows Alpa to systematically explore a complex space and derive near-optimal 

execution plans 

2. Alpa is built on mainstream components (JAX, XLA/HLO, NCCL, Ray), which makes integration with 

existing research and production stacks straightforward and reproducible. 

3. Alpa uses an MPMD runtime to handle different stages and mesh shapes, creating separate static 

instruction lists for each mesh, while using SPMD inside a mesh for intra-op parallelism. 
 

Weaknesses 

1. Alpa does not explicitly model cross-stage communication in its DP or ILP objectives, while this traffic 

is assumed to be small, it can lead to suboptimal stage assignments on clusters with very low inter-mesh 

bandwidth or poorly balanced cuts. 

2. The number of micro-batches is a critical hyperparameter that significantly affects pipeline efficiency, 

yet Alpa’s current formulation does not automatically optimize, requiring external enumeration. 
 

Discussion 

1. What if we also tune the microbatch count B when choosing stage cuts, and allow branch-aware (non-

linear) pipeline schedules? Would a simple outer-loop search over B and schedule types capture most of 

the remaining gains? 


