
Paper Review- ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning 

 

Summary: This paper presents ZeRO-Infinity, a system built to overcome the “GPU memory wall,” which makes 

it hard to train very large deep learning models. Model sizes have grown more than 1000x in recent years, but 

GPU memory has only grown about 5x, so existing methods like 3D parallelism need huge GPU clusters and 

complex code changes. ZeRO-Infinity extends ZeRO-3 by introducing the Infinity Offload Engine, which splits 

model states (parameters like weights, gradients, optimizer states) across GPU, CPU, and NVMe (SSD) storage. 

The system uses bandwidth-centric partitioning (allgather across partitioned data so every GPU pulls its share in 

parallel) and an overlap-centric design (hiding data transfers by overlapping them with computation) to fully use 

PCIe and NVMe bandwidth, keeping efficiency high even with slower memory. It also adds memory-centric tiling 

(breaking giant layers into smaller pieces) to handle massive operators without complex model parallelism. The 

paper also talks about DeepNVMe, a custom NVMe library that maximizes throughput while avoiding memory 

fragmentation, which is key for stable long training runs. The system shows impressive results: training a 32 

trillion-parameter model (50x more than 3D parallelism) on 512 GPUs at 25 PFLOPS and even allowing trillion-

parameter models to be fine-tuned on a single DGX-2 node without code changes. 

 

Evaluation: The paper addresses a highly significant challenge: model sizes in deep learning are growing much 

faster than GPU memory. ZeRO-Infinity makes an important contribution by enabling training up to 32 trillion 

parameters and, more importantly, allowing trillion-parameter fine-tuning on a single node. It also removes the 

need for complicated code refactoring required by 3D parallelism, which is a strong improvement in usability. 

The solution is novel, combining NVMe offloading, bandwidth-centric partitioning, overlap-centric design, and 

memory-centric tiling (which allows hidden sizes up to 64K), supported by detailed bandwidth analysis that shows 

performance matches predicted limits. The experiments are detailed, using GPT-like Transformer models of 

different sizes and comparing against baselines such as ZeRO-Offload and 3D parallelism, with really good results 

like superlinear scalability (64 to 512 GPUs) for a 1T model and efficient NVMe offloading up to 20T scale. The 

paper is clearly written and well structured, covering memory and bandwidth analysis and related system design 

concepts very clearly. 

 

Main takeaways 

1. ZeRO-Infinity proves that cheap, massive, and slow memory (CPU and NVMe) can be effectively 

combined across a cluster to completely remove the device memory limit on model scale, even for models 

in the tens of trillions of parameters 

2. The system can handle models as big as 32 trillion parameters on 512 GPUs, but it can also fine-tune 

trillion-parameter models on just one DGX-2 machine, making huge models more accessible to people 

without large clusters. 

 

Strengths 

1. ZeRO-Infinity uses techniques like bandwidth-centric partitioning, overlap-centric design, and memory-

centric tiling which allow slower memories to work effectively by hiding latency and reducing memory 

pressure. 

2. It removes the need for complex code refactoring and, with its ease-inspired implementation (hooks and 

automated data movement/partitioning), makes trillion-parameter fine-tuning possible on a single node 

and large-scale training much more accessible. 

 

Weaknesses 

1. At extreme scales (20T+ parameters), efficiency drops because of limited CPU memory for activations, 

which forces very small per-GPU batch sizes. This shows that bottlenecks remain despite NVMe 

offloading. 

2. Training with small batch sizes is slowed down by limited GPU-to-GPU bandwidth (70 GB/s), showing 

a performance ceiling in the current hardware setup. 

 

Discussion 

1. The paper only evaluates Transformer-based models. How well would the same techniques (offloading, 

tiling, overlap) apply to other architectures like CNNs, RNNs, or mixture-of-experts that have different 

memory and compute patterns? 


